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1 The Electric Field

1.1 Coulomb’ s Law

- 1
F:kqquf: 61161272
r2 dmeg 12

k = 8.99°, permittivity constant &y = 8.85 x 1012

1.2 Gauss’s Law

A pointing outward from the surface. An inward piercing field is negative flux. An outward

piercing field is positive flux. The integral form:
EOfE_” dff: Genc

If genc is positive, the net flux is outward; if genc is negative, the net flux is inward. The

deriavative form:

v.g="

€
The electric field due to a charge outside the Gaussian surface contributes zero net flux

through the surface, because as many field lines due to that charge enter the surface as leave it.

1.3 The way to find the Electric field
FRELERNNEREMRIEKZE

1. Ring superposition

D

qz
4ren(22 + R2)3/2

2. Disk superposition

o [1 z ]
2¢€p (22 + R2)1/2
*'JFH = ,Hﬁ/‘EfE;J‘ K %gi

1.Spherical Symmetry: Inside and outside a uniform sphere of charge



charge is q'ﬂl

AP
Gaussian
+ surface

There is flux only
through the
two end faces.
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This result holds for any point at a finite distance from the sheet.

3.Cylindrical Symmetry:An infinite line of charge with a uniform line density A.
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2 Electric Potential
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There is flux only
through the
curved surface.
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net potential: V' = Z V; = i
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The total potential energy of systems of charged particles:

qiq; 495
o= S0 = g S = L5

Summary

A charged particle:

An electric dipole:

3 Electric Dipole

Electric dipole moment:

T; 871'6 Ti
i<j i 0 iz "
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A continuous charge distribution (e.g., rod and disk):

L [ dg
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4req r

Electric potential energy of a system of charged particles:
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The electric field at an arbitrary point P along the dipole axis, at distance z from the

dipole’ s center,

E = q _ a
Ameg(z — 5d)2  dmeg(z + 3d)?

I p

—EF=_ 2
2meg 23

(z>d)

The net torque when a dipole in a uniform electric field:

7=—Fdsind = —pEsinf = p' X E
Potential due to an Electric Dipole:

1 pcos 1 p-7

V_

= = d
dmeg 12 dmeg T3 (r>d)

4 The Triangle of Electrostatics

5 The Electrical Properties of Conductors

5.1 A Charged Isolated Conductor

Electrostatic Equilibrium:

—

- inside __ _
Einside - 07 Anet — 0, V;nside = Vsurface




1. All points of the conductor -whether on the surface or inside - come to the same
potential(even if the conductor has an internal cavity and even if that cavity contains a net
charge).

2. All the excess charge remains on the outer surface of the conductor(even if the conductor

has an internal cavity).

5.1.1 Electric Field Outside Isolated Conductors

Notice that the surface charge density o varies, however, over the surface of any nonspherical conductor.

Direction: The electric field E at and just outside the conductor’ s surface must also be
perpendicular to that surface.

Cylindrical Gaussian surface:

There is flux only
(a) through the
external end face.

5.1.2 Parallel Plates

o Single Plate: all the excess charge spreads out on the two faces of the plate with a uniform

surface charge density.

e Two Parallel Plates: all the excess charge moves onto the inner faces of the plates.

5.2 Charge Inside a Spherical Metal Shell

Gaussian
surface




Charge distribution: a total charge ) must lie on the inner wall of the shell, and a total

—(@ move to the outer wall and they must spread out uniformly.

5.3 Charge Above a Infinite Grounded Gonducting Plane

The Method of Image
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The total charge induced on the z = 0 plane is —q.
6 Resistance and Capacitance

6.1 Resistance

Concepts

o Current Density:

e o Drift Velocity : (n is the number of carriers per unit volume)

—_

1 = nAevy J = nevy

e Resitivity and conducticivity:
1.

~| &
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In the average time 7(mean free time) between collisions, the electro will on average acquire

R o eF m
m nesr
e Resistance:
Vv L
R=— R=p—
G Pa
Equation of Continuity
ap -
L _ovy.
ot

6.2 Calculating Capacitance

@ Assume a charge g on the plates;

©@ calculate the electric field E between the plates in terms of this
charge, using Gauss’ law;

© knowing E calculate the potential difference V between the
plates from V = — [T E-d§= [ Eds (note the sign);

© calculate C from g = CV.

Capacitance of a Parallel-Plate Capacitor:

We use Gauss’ law to relate
g and E. Then we integrate the
E to get the potential difference.

i
Gaussian
surface

C--~- S
Path of
integration
q= GoEA
EoA
C=—
d

Capacitance of a Cylindrical Capacitor:

q=eEA=¢eyE(2nrL)

=+ a
= q dr q b
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6.3 Energy Stored in a Capacitor

Energy:
2
q 1 2
U=—=-CV

2C 2

Energy Density:
1
u = §€0E2

Gauss’ law with a dielectric (withD = ke E)
§D-di—co fuEai—q
6.4 DC Circuits

Concepts emf ¢, pover P, dielectric constant «, electric displacement D

e

q

P=iV
V2
P=iR="—
! R

Kirchhoff ’ s loop rule: The algebraic sum of the changes in potential encountered in a
complete traversal of any loop of a circuit must be zero.
Charging a Capacitor
v _gdg _
d Cdt
e Noting i = dg/dt,we find
dg ¢
R4+ 1 _
i c®

capacitive time constantT = RC

iE —i’R.

= qg=Ce(l—e V) =i= Eetim



Discharging a Capacitor Energy change:

d 2
(q> +i2R =0

dt \ 2C
dg — q
dt+RC_O

AT AT EL Loop Rule #1[m1#% FE AR 0, L IEFESET RS T .

6.5 Dielectrics and Gauss’ Law

eoj{/iE_"-dfTZ%D_"dz‘Y:q,

electric displacement D = reE

7 The Ampere Force

A T € 77 1)

7.1 Hlical Movement

The radius of the helix: r = T;TB%.
The parallel component v determines the pitch p of the helix -that is, the distance between

adjacent turns.

7.2 The Hall Effect

1= JA = nevgA
eF = evyB,
] B
V=FEd=-vsBd=——Bd=—"—Jd
neA ne
E B E 1
Hall resistivity and coefficientp,, = J—: =- Ry = B:]x =
7.3 Current-Carrying Wire
F=iLxB

dF =4dL x B
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8 The Magenetic Field

8.1 Biot-Savart law

Ho 1dS X 7
a7 3 7

where the constant 0 = 4x10777 - m/A is called the permeability constant. Force Between

dB =

This element of current creates a
magnetic field at P, into the page.

.
\ids

4B (into
N ¥ page)
5

5( \ Current

distribution

K 1: Biot-Savart Law

Two Parallel Wires Fy, = |iyL x B,| = 0%

The field due to a
at the position of b
creates a forceon b. <

d
\/
By
r

- s )
K B, (due to i,)

2: Force Between Two Parallel Wires
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This is how to assign a
sign to a current used in

Ampere's law.
Only the currents

. + ]
encircled by the &
loop are used in Direction of

\ .
Ampere's law. lgl integration

Direction of Figure 4. Net current

integration . . R
lenc = 1 — I2.

8.2 Ampere’s Law
fg -ds = MOienc;
where i¢p is the net current encircled by the closed loop.

8.3 Examples

8.3.1 A Long Straight Wire

This element of current
creates a magnetic field
at P, into the page.

Kl 3: A Long Straight Wire

/Loidgxf"
ar 73

_/LoingR
T4 3

5 Mo * jRds  poi {/OO Rst]

dB =

4 J_oo ™ AnR | )_o 13

_ Mot
27R’

The direction follows a curled-straight right-hand rule(47 F#JiE i M1).
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ML J(out of page)

1
i |

K| 4: An infinite Sheet

8.3.2 Outside a Long Straight Wire

fﬁ -dS = B(27r) = poi = bozedB = Hov
2mr

8.3.3 Inside a Long Straight Wire

Supposed that the current is uniformly distributed over thecross section of the wire,

2

. T
lenc = ﬁ
_ “Oiend _ Ho r
2mr 2mR?

8.3.4 A Sheet Of Moving Charge

Consider an infinite flat sheet of current density Js in the y-direction: Ampere’ s law can

be applied to the rectangular path:

745 - d§ = 2Bl = pg(Jl)

_ /J’OJS
2

B

8.3.5 Magnetic Field of a Solenoid

The field inside the coil is uniform and parallel to the solenoid axis. The magnetic field

b
fé.dg—/ B.d5 = Bh

Let n be the number of turns per unit length of thesolenoid; then the loop encloses nh turns

outside the solenoid is zero.

and:

Genc = 1(nh)

12
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Kl 5: Amperian Loop of Solenoid

= B = pgin
8.3.6 Magnetic Field of a Toroid

A toroid is a solenoid that has been curved until its two ends meet, forming a hollow donut.

(-wmmmm\mmw

(e

(a)

6: Amperian Loop of Toroid

N
B = pgi—
2rr

B = 0 for points outside an ideal toroid.

8.4 The Properties of B

e The curl of B: (ZH MM TER)

/(v><é)-dﬁ’:fﬁ-d;:uoiem:uo/f-dfi’,
S S
V x B = poJ(7)
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o The Divergence of é( Wi H )

!%EAE: (V-B)dV =0.
V-B=0

9 Magnetic Properties of Materials

9.1 Magenetic Dipole

The total torque on the coil:

—

”:Ni/fxé:ﬁxB,

where ji = N iA is known as the magnetic dipole moment of the coil.

-—

Side 1 A"

2]

/—"mh 2

Side 3
Rotz lllull—/\ l\

T=—uBsinf = —2(—MB cosf).

The energy of a magenetic dipole:

The field of a Megnetic Dipole The Megneticat field at the center of a single-loop coil with

a magnetic dipole moment
_ Mo p
T2 R3

The magnetic field at an axial point:

9.2 Magnetic Materials

10 Faraday’ s Law of Induction

ddp
£=-NZE,
dt
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p ti . terial h t h The law is actually an approximation that is valid only
aramagnetism ocCcurs In materials whose atoms have when the ratio Bu/T is not too large.

permanent magnetic dipole moments /i. Jre——
. . . o —o—
In the absence of an external magnetic field, these atomic %
. . Greater B,y at same
dipole moments are randomly oriented, and the net

T gives greater dipole
alignment. 130K

magnetic dipole moment of the material is zero. Sy m— s2mx
. . =4 . . ©421K
In an external magnetic field B.y, the magnetic dipole e
B/ T (1/K)

moments tend to line up with the field, which gives the

[ t ti d I t In a sufficiently strong B’m, all dipoles in a sarrlple of N
sampl€ a n€t magnetic dipole moment. atoms and a volume V line up with B, hence M saturates

at My = Np/ V.

@ A paramagnetic solid containing N atoms per unit volume,
each atom having a magnetic dipole moment i, with
energy U being —ji - B.

Suppose the direction of /i can be only parallel or
antiparallel to an externally applied magnetic field B (this
will be the case if /i is due to the spin of a single electron).
The fraction of atoms whose dipole moment is parallel to
B is proportional to e~U/keT — etB/keT and the fraction of
atoms whose dipole moment is antiparallel to Bis
proportional to e~#B/ksT

o The magnetization is therefore e#B/ksT — e=1B/ksT o B/ T

for small B/T.
R ;
fEas—- [Boad

dt
MR )
= 0B
E=-22
V x 5

Notice electric potential has no meaning for electric fields that are produced by induction.

11 Inductors and Inductance

L=N®g/i
for a solenoid,
L = pon?
11.1 RL Circuits
Loop Rule:
L% +Ri=¢

inductive time constant: 77, = %

i = %(1 — et

15



11.2 Energy and Energy Density

1
Up = 5LI2
B2
Uy = ——
2410

11.3 Mutual Induction

Self-inductance L (of a single circuit) and mutual inductance M12 = M21 (of two circuits)

d(N1®11) diy

5 = - = —L _
1 dt Vat
d(Ny®a1) diq
= - = —M _

&1 dt 2

12 AC Circuits

12.1 LC Oscillations

The total energy U in an oscillating LC' circuit is given by
Li2 q2
In the absence of resistance, U remains constant with time
dU d (Li? ¢ di qdq
b bR S . =
dt dt< 2 +20> Yot T Codt
With i = dq/dt and di/dt = d*q/dt?, we find
d’¢ 1
e Tet="
q=Qcos(wot +¢), w=1/VLC

L

12.2 Damped Oscillations in an RLC Circuit

dU_L.di qdq

- = - ii__.Q
o Patoas R

d%q dg 1
=q=Qe Tcos(wt +¢) w=1/wd—(1/7)2
1/ =R/(2L)

Forced oscillations in a series RLC circuit at a driving angular frequency wy

€ =emcoswgt, 1= 1Icos(wgt+ @)

16



The electrical and magnetic
energies vary but the total
is constant.

S

ro
o

Energy

0 /2 T

Time

K 7: The Energy Oscillations

12.3 Impendance

Assume the potential difference across a circuit element (resistor, capacitor, and inductor)
is

v(t) =R <Vei“’dt) ,

and the current in the element is

i(t) = R (zeiwdt) .
Define complex impendance as:

Z = Ze'? =

l
~| <

HERIX A ¢ NEHLR oI
o In a resistive load, 1
Z=R. q 171
o In an inductive load, T
7 = iwgl. 7 1i

o Notice di(t)/dt = (iwy)i(t).

o Similarly, in a capacitive load, —T

K] 8: Three Circuits

13 Maxwell’ s Equations and EM Waves

Maxwell’s Equations Gauss’s Law for E:

v.E=F
€0
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Faraday’s Law:

- 0B
EF=——
V x o
Gauss’s Law for B
V-B=0

Ampere-Maxwell’s Law:

_ - OE
VXxB= MOJ‘FMOEOE

In vacuum, electromagnetic waves satisfy:

L 109%E
viE— 22
c? Ot2?

-

25 10°B

2 Ot?

Therefore, in vacuum each Cartesian component of E a B satisfies the wave equation

o0 f

2vr2
@:Cvfa

1
VHo0€0

where the speed of all electromagnetic waves is ¢ = ~ 3.00 x 108m/s. Electromagnetic

waves are transverse:

E is always perpendicular to B:
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