达朗贝尔公式定解问题¶
坐标变换,方程叠加¶
\[\frac{\partial^2u}{\partial t^2}-\alpha^2\frac{\partial^2u}{\partial x^2}=0 \Rightarrow\left(\frac\partial{\partial t}+\alpha\frac\partial{\partial x}\right)\left(\frac\partial{\partial t}-\alpha\frac\partial{\partial x}\right)u=0\]
\[\begin{cases}X = x+at\\Y= x-at\end{cases}\quad
\text{and} \quad\begin{cases}x=\frac{X+Y}{2}\\t=\frac{X-Y}{2a}\end{cases}\]
\[\begin{aligned}\frac{\partial}{\partial X}&=\frac{\partial t}{\partial X}\frac{\partial}{\partial t}+\frac{\partial x}{\partial X}\frac{\partial}{\partial x}=\frac{1}{2a}\bigg(\frac{\partial}{\partial t}+a\frac{\partial}{\partial x}\bigg)\\\frac{\partial}{\partial Y}&=\frac{\partial t}{\partial Y}\frac{\partial}{\partial t}+\frac{\partial x}{\partial Y}\frac{\partial}{\partial x}=-\frac{1}{2a}\bigg(\frac{\partial}{\partial t}-a\frac{\partial}{\partial x}\bigg)\end{aligned}\]
那么在新坐标系下的控制方程为:
\[\begin{equation}
\frac{\partial^{2}u}{\partial X\partial Y} = 0
\end{equation}\]
显然方程的通解为:
\[\begin{equation}
{u = f_1(X) + f_2(Y) = f_1(x+at)+f_2(x-at)}
\end{equation}\]
行波法
两个方程的叠加:
- \(f_1(X)\): \(X\)( \(x= X-at\) )这个坐标系以恒定的速度 \(a\) 向原来坐标轴的负方向移动,解的形式始终不变(位置和形状与 \(t\) 无关)
- \(f_2(Y)\): \(Y\)( \(x = Y+at\) )这个坐标系以恒定的速度 \(a\) 向坐标轴的正方向移动上来看,解的形式始终不变(位置和形状与 \(t\) 无关)
考虑无限长弦的波动¶
对于足够长的弦,在有限时间内 ,远处的边界条件会对结果有影响此问题,因此可以把足够长的弦近似为一个无限长的弦问题(没有边界条件)。
泛定方程:
\[\begin{equation}u_{tt} - a^2u_{xx} = 0(a^2 = \frac{T}{\rho}, -\infty < x <\infty)\end{equation}\]
初始条件:初始位移和初始速度
\[\begin{equation}
\left.u\right|_{t=0}=\varphi(x)\quad
\left.u_t\right|_{t=0}=\psi(x),(-\infty<x<\infty)
\end{equation}\]
把初始条件代入通解方程(2)
\[\begin{cases}
&f_1(x)+f_2(x)=\varphi(x) \\
&af_1(x)-af_2(x)=\int_{x_0}^x\psi(\xi)\mathrm{d}\xi+af_1(x_0)-af_2(x_0)
\end{cases}\]
\[\begin{cases}f_1(x)=&\frac{1}{2}\varphi(x)+\frac{1}{2a}\int_{x_0}^x\psi(\xi)\mathrm{d}\xi+\frac{1}{2}\Big[f_1\big(x_0\big)-f_2\big(x_0\big)\Big]\\f_2(x)=&\frac{1}{2}\varphi(x)-\frac{1}{2a}\int_{x_0}^x\psi(\xi)\mathrm{d}\xi-\frac{1}{2}\Big[f_1\big(x_0\big)-f_2\big(x_0\big)\Big]\end{cases}\]
达朗贝尔公式(d’Alembert’s Formula)
\[u(x,t)=\frac12[\varphi(x+at)+\varphi(x-at)]+\frac{1}{2a}\int_{x-at}^{x+at}\psi(\xi)d\xi \]
无限长弦的振动¶
定解方程:
- 泛定方程:
\[\begin{equation}u_{tt} - a^2u_{xx} = 0\quad(a^2 = \frac{T}{\rho}, \quad 0 < x <\infty)\end{equation}\]
- 初始条件:初始位移和初始速度
\[\begin{equation}
\left.u\right|_{t=0}=\varphi(x)\quad
\left.u_t\right|_{t=0}=\psi(x)\quad(0<x<\infty)
\end{equation}\]
- 边界条件
根据左边的边界条件来考虑进行 奇延拓还是偶延拓 :
左端固定的半无限长弦振动¶
-
定解方程:方程(5)和(6) 和边界条件 \(\left.u\right|_{x=0} = 0\)
-
把初始条件进行奇延拓
\[\varphi_{odd}=\begin{cases}&\varphi(x),x>0\\&0,x=0\\&-\varphi(-x),x<0\end{cases}
\qquad \psi(x)_{odd}=\begin{cases}&\psi(x),x>0\\&0,x=0\\&-\psi(-x),x<0&\end{cases}\]
- 等价于一个无限长弦的振动方程,\(x>0\) 部分的解 \(v(x,t)\) 就为原方程的解 \(u(x,t)\) 。
\[\left.\frac{\partial^2\nu}{\partial t^2}-a^2\frac{\partial^2\nu}{\partial x^2}=0,(-\infty<x<\infty)\quad\left.\nu\right|_{t=0}=\left.\varphi_{odd}(x),\nu_t\right|_{t=0}=\psi_{odd}(x)(-\infty<x<\infty)\right. \]
奇延拓
\[x>at:\quad\nu(x,t)=\frac12[\varphi(x+at)+\varphi(x-at)]+\frac1{2\alpha}\int_{x-at}^{x+at}\psi(\xi)d\xi \]
\[\begin{aligned}
x<at{:} \quad\nu(x,t)&=\frac12[\varphi(x+at)-\varphi(at-x)]-\frac1{2a}\int_{x-at}^0\psi(-\xi)d\xi+\frac1{2a}\int_0^{x+at}\psi(\xi)d\xi \\
&=\frac12[\varphi(x+at)-\varphi(at-x)]+\frac1{2a}\int_{at-x}^0\psi(\xi)d\xi+\frac1{2a}\int_0^{x+at}\psi(\xi)d\xi \\
&=\frac12[\varphi(x+at)-\varphi(at-x)]+\frac1{2\alpha}\int_{at-x}^{x+at}\psi(\xi)d\xi
\end{aligned}\]